张敏

张敏

 
 
 

海洋研究院副研究员


中国地球物理学会“井孔地球物理专业委员会”委员


电子邮箱:zhang_min@pku.edu.cn


 

教育经历:


博士 (2003) 香港理工大学电机工程系,专业方向:光纤传感

硕士 (1999) 清华大学精密仪器与机械学系,专业方向:光学工程

本科 (1996) 清华大学精密仪器与机械学系,专业方向:仪器仪表

 

研究工作经历:


2003-2006 清华大学电子工程系助理教授

2006-2016 清华大学电子工程系副教授

2016-2018 北京大学海洋研究院助理研究员

2018-现在  北京大学海洋研究院副研究员

 

主要研究内容:


1)新型光纤传感的机理及应用基础研究,包括光纤气体有源传感技术机理及其在密闭腔内的微量气体组份检测方法,基于布里渊散射的光纤双折射特性及其检测方法研究。

2)高精度光纤传感技术及其在恶劣环境下的工程应用研究,包括基于光纤FP传感器和光纤光栅传感器的高精度温度、压力传感技术及其在稠油、超稠油油气开发中的应用,干涉型光纤水听器及其系统集成技术及其在海底观测网和海洋物探中的应用,分布式光纤振动传感技术及其在超长距离海缆和周界安防中的应用等。

 

学术兼职:

中国光学工程学会光学传感技术专家工作委员会暨中国光纤传感技术及产业创新联盟副主席

中国光学学会光电技术专业委员会委员,集成与纤维光学专业委员会委员

中国仪器仪表学会光机电技术与系统集成分会理事、仪表元器件学会光纤传感器专业委员会委员

中国电子学会敏感技术学会光纤传感器专业分会委员

中国光纤传感学术会议暨产业化论坛执行委员会委员

 

研究课题:

1、2003年11月回国参加工作,参加了国家十五海洋863重大项目“时移地震采集关键设备研制”和“钻井中途油气层测试技术”中光纤传感技术的研究,成为研究骨干,负责总体技术方案。该课题于十一五期间得到延续,因此在2006年12月~2010年12月期间,作为子课题负责人,承接并完成了十一五国家高技术研究发展计划(863)“深水高精度地震勘探技术”子课题“光纤检波器地震拖缆研制”任务(2006AA0AA102-03),在国内第一次研制成功基于光源内调制的硬件集成化光纤检波器地震拖缆系统,并进行了实际海洋地震采集实验,取得了大量关键技术成果。包括空气腔芯轴型光纤水听器的设计方法和参数控制方法,基于光源内调制的光纤水听器相位生成载波解调方法与算法,基于光源内调制的光纤水听器参数椭圆估计算法,光纤水听器拖曳缆的结构设计方法和制作方法等等。

2、2007年1月~2009年12月,在光纤多参量传感技术研究方面,参加了靳伟教授主持的国家自然科学基金港澳杰出青年基金项目“基于光子晶体光纤的传感机理与应用研究”,以此为基础,于2008年1月~2010年12月独立承担并完成了国家自然科学基金项目与中国工程物理研究院联合基金(NSAF联合基金)项目“微量气体组分光纤测试技术研究”( 10776016),在基于微型光纤FP腔氢气传感技术研究上取得突破,实现了适用于密闭环境的微量氢气的高灵敏度探测,课题于2011年获得国家自然科学基金与中国工程物理研究院联合基金优秀奖。。

3、2007年1月~2010年9月,负责并完成了十一五国家科技支撑项目课题“海缆敷设与电缆安全运营智能保障系统的研究”任务(2007BAE19B04),研制成功基于双向MZ干涉仪结构的分布式光纤振动传感系统,在舟山电力公司220kV海底电力电缆系统在线监护中得到应用,取得良好的监测效果,该项目成果被宁波诺可电子科技发展有限公司转化成产品,获得2011年宁波市科技进步三等奖和2012年浙江省科技进步三等奖。

4、2007年~2010年,负责并完成了十一五国防预研项目“XX光纤阵列研究”,取得了基于补偿干涉仪和PGC调制解调技术的全光阵列的关键技术突破,在湖上试验中获得了优于零级海况噪声的系统性能,为全光纤系统的后续研制奠定了坚实的基础。在后续研究中进一步提出并研制了基于光频差分调制解调技术的全光纤水听器复合复用方法和系统设计方法,形成了基于硬件解调的差频调制解调算法内核,在高稳定性高性能光纤水听器系统技术研究方面取得了重要的成果。

5、2013年1月至今,负责承担了十二五“863”资源环境技术领域主题项目“超深稠油油藏井筒降粘关键技术“之子课题“稠油热采井光纤高温高压测试仪器及解释软件平台开发”,并以此课题的阶段成果为基础,为中国石油新疆油田分公司的风城油田开发了SAGD蒸汽腔前缘光纤监测仪器和井下光纤微地震监测系统,进行了诺干井次的现场实验,为后续进行多分量海底光纤地震采集缆(OBC)的研制建立了关键的技术基础。

 

发表论文: 


  1. 1. Wang K, Zhang M, Duan F, et al. Measurement of the phase shift between intensity and frequency modulations within DFB-LD and its influences on PGC demodulation in a fiber-optic sensor system[J]. Applied optics, 2013, 52(29): 7194-7199.

    2. Xie S, Zhang M, Li Y, et al. Positioning error reduction technique using spectrum reshaping for distributed fiber interferometric vibration sensor[J]. Journal of Lightwave Technology, 2012, 30(22): 3520-3524.

    3. Zhang H, Zhang M, Wang L, et al. Output noise analysis of optical fiber interferometric sensors using a 3× 3 coupler[J]. Measurement Science and Technology, 2011, 22(12): 125203.

    4. Xie S, Zou Q, Wang L, et al. Positioning error prediction theory for dual Mach–Zehnder interferometric vibration sensor[J]. Journal of Lightwave Technology, 2011, 29(3): 362-368.

    5. ZHENG Z, ZHANG M. Quantitative determination of trace heavy metals in polluted soil by laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(2): 452-455.

    6. Yang Z, Zhang M, Liao Y, et al. Extrinsic Fabry–Perot interferometric optical fiber hydrogen detection system[J]. Applied optics, 2010, 49(15): 2736-2740.

    7. Shi Q, Tian Q, Wang L, et al. Performance improvement of phase-generated carrier method by eliminating laser-intensity modulation for optical seismometer[J]. Optical Engineering, 2010, 49(2): 024402.

    8. Yu X, Childs P, Zhang M, et al. Relative humidity sensor based on cascaded long-period gratings with hydrogel coatings and Fourier demodulation[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1828-1830.

    9. Xuan H, Jin W, Zhang M, et al. In-fiber polarimeters based on hollow-core photonic bandgap fibers[J]. Optics express, 2009, 17(15): 13246-13254.

    10. Yu X, Zhang M, Childs P, et al. Research on testing the characteristics of hydrogel film by using a long-period fiber grating[J]. Applied optics, 2009, 48(11): 2171-2177.

    11. Liu Y, Wang L, Tian C, et al. Analysis and optimization of the PGC method in all digital demodulation systems[J]. Journal of Lightwave Technology, 2008, 26(18): 3225-3233.

    12. Yin K, Zhang M, Ding T, et al. An investigation of a fiber-optic air-backed mandrel hydrophone[J]. Optics Communications, 2008, 281(1): 94-101.

    13. Wang L, Liu Y, Zhang M, et al. A relative humidity sensor using a hydrogel-coated long period grating[J]. Measurement Science and Technology, 2007, 18(10): 3131.

    14. Wu K, Zhang M, Liao Y. Signal dependence of the phase-generated carrier method[J]. Optical Engineering, 2007, 46(10): 105602.

    15. Liu Y, Wang L, Zhang M, et al. Long-period grating relative humidity sensor with hydrogel coating[J]. IEEE Photonics Technology Letters, 2007, 19(12): 880-882.

    16. Yan C, Zhong J, Liao Y, et al. Design of an applied optical fiber process tomography system[J]. Sensors and Actuators B: Chemical, 2005, 104(2): 324-331.

    17. Dong S, Liao Y, Zhang M, et al. Effects of chemical modification on fusion splicing strength and optical parameters of optical fiber[J]. Optical engineering, 2005, 44(1): 015002.

    18. Zhang M, Wang D N, Jin W, et al. Wavelength modulation technique for intra-cavity absorption gas sensor[J]. IEEE transactions on instrumentation and measurement, 2004, 53(1): 136-139.

    19. Wang X, Qiu X, Hu C, et al. Research on a dual polarization-maintaining FBG accelerometer[C]//2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2015, 9620: 96200Q.

    20. Liu F, Wang X, Wang X, et al. Field test of two 16-element fiber optic seismometer arrays[C]//2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2015, 9620: 962016.

    21. GB/T 7714

    22. Yu L, Pan Y, Hu C, et al. A fiber optic pressure sensor based on white-light extrinsic Fabry-Perot interferometer and fiber Bragg grating for mixed environment[C]//2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2015, 9620: 96200X.

    23. 赵子文,王为宇,张敏,等.通过改进非本征法布里-珀罗干涉型光纤传感器结构实现温度补偿的新方法[D]. , 2013.

    24. Yu L, Lang J, Pan Y, et al. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor[C]//2013 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2013, 9044: 90441A.

    25. Kai W, Changdong T, Qingping S, et al. Demodulation method to suppress the influence of laser intensity disturbance in optical fiber hydrophone system[J]. Infrared and Laser Engineering, 2013, 6: 039.

    26. Chang Y, Hong-pu Z, ZHANG M, et al. A new fiber-optic flexible reed accelerometer[J]. Journal of Optoelectronics. Laser, 2013, 2: 003.

    27. Xiao Y, Zhang M, Wang K. The implementation of zero-phase, high-pass filtering in interferometric fiber-optic hydrophone system[C]//Advanced Sensor Systems and Applications V. International Society for Optics and Photonics, 2012, 8561: 85611J.

    28. Dai Z, Tian C, Wang K, et al. Noise analysis and optimization for PGC method[C]//OFS2012 22nd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2012, 8421: 84218A.

    29. WANG K, SHI Q, JIANG J, et al. Influence of parameter estimation error on demodulation performance of PGC arctangent algorithm in optical fiber hydrophone[J]. Journal of Optoelectronics. Laser, 2012, 10: 006.

    30. Zhang H, Zhang M, Liao Y. Noise floor analysis of the phase demodulation scheme using a 3× 3 coupler[C]//OFS2012 22nd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2012, 8421: 842195.

    31. Xie S, Zhang M, Li Y, et al. The influence of fiber inhomogeneity on the positioning accuracy of distributed fiber vibration sensor[C]//Advanced Sensor Systems and Applications V. International Society for Optics and Photonics, 2012, 8561: 85610O.

    32. Yang C, Zhou H, Zhang M, et al. A newtypefiber-optic accelerometer[C]//AdvancedSensor Systems and Applications V. International Society for Optics and Photonics, 2012, 8561: 856113.

    33. Hu Y, Hu Z, Luo H, et al. Recent progress toward fiber optic hydrophone research, application and commercialization in China[C]//OFS2012 22nd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2012, 8421: 84210Q.

    34. Wang K, Shi Q, Dai Z, et al. The influence of parameters measurement error on demodulation performance of PGC arctangent algorithm in optical fiber hydrophone[C]//OFS2012 22nd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2012, 8421: 8421B6.

    35. Zou Q, Dou S, Hu C, et al. A novel noise suppression method for white light extrinsic Fabry-Perot interferometric fiber-optic pressure sensor in heavy oil thermal recovery downhole environment[C]//OFS2012 22nd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2012, 8421: 8421BI.

    36. Fang Y, Duan F, Zhang M, et al. Pd-Ag film coated LPG for hydrogen sensing[C]//Third International Conference on Smart Materials and Nanotechnology in Engineering. International Society for Optics and Photonics, 2012, 8409: 840935.

    37. Yang Z, Yu X, Chu X, et al. Pd-Ag film coated cascaded long period gratings for hydrogen gas sensing[C]//21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2011, 7753: 77539R.

    38. Li W, Liao Y, Zhang M. Underground fluid composition analysis based on the near infrared spectrum[C]//2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2011, 8199: 81991J.

    39. Ma X, Zheng Z, Zhao H, et al. Laser induced breakdown spectroscopy algorithm using weights iteration artificial neural network[C]//21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2011, 7753: 77532K.

    40. Xie S, Zhang M, Li Y, et al. A novel positioning method for dual Mach-Zehnder interferometric vibration sensor in submarine cable security application[C]//21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2011, 7753: 77530L.

    41. Zhang H, Zhang M, Wang L, et al. An improved PGC demodulation method to suppress the impact of laser intensity modulation[C]//2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2011, 8199: 81990Q.

    42. Qingping Z H W L S, Yanbiao T C Z M L. A New Demodulation Method for Time Division Multiplexing System of Fiber-Optic Hydrophone Using a 3× 3 Coupler [J][J]. Chinese Journal of Lasers, 2011, 5: 034.

    43. Min S S Z H Z, Yanbiao L. Acoustic Sensitivity of Interferometric Fiber-Optic Mandrel Hydrophone using Orthogonal Design[J]. Laser & Optoelectronics Progress, 2011, 7: 011.

    44. Zhang H, Wang D, Shi Q, et al. Optical intensity compensating method for time division multiplexing of fiber-optic hydrophone using a 3 x 3 coupler[J]. Zhongguo Jiguang(Chinese Journal of Lasers), 2011, 38(11): 1105006-8.

    45. Yu X, Zhang M, Liu S, et al. Response of hydrogel coated cascaded long period gratings to relative humidity[C]//21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2011, 7753: 775390.

    46. Yu X, Wang L, Zhang J, et al. Optical fiber relative humidity sensor based on a hydrogel coated long period grating[C]//2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2011, 8199: 81990W.

    47. Wang K, Shi Q, Tian C, et al. The design of integrated demodulation system of optical fiber hydrophone array for oceanic oil exploration[C]//2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, 2011, 8199: 81990R.

    48. SHI Q, WANG L, ZHANG M, et al. Frequen-cy-modulated phase generated carrier demodulation for eliminateing companion amplitude modulation[J]. Journal of Optoelectronics Laser, 2011, 22(2): 180-184.

    49. A Technique on Fabry-Perot Optical Fiber Hydrogen Measurement

    50. Yang Z, Zhang M, Liao Y, et al. Analysis of a low-finesse extrinsic Fabry-Perot interferometric optical fiber sensor[C]//Advanced Sensor Systems and Applications IV. International Society for Optics and Photonics, 2010, 7853: 78533C.

    51. Xie S, Zhang M, Lai S, et al. Positioning method for dual Mach-Zehnder interferometric submarine cable security system[C]//Fiber Optic Sensors and Applications VII. International Society for Optics and Photonics, 2010, 7677: 76770A.

    52. Shi Q, Wang L, Zhang H, et al. A new phase generated carrier demodulation method based on fixed phase delay[C]//Advanced Sensor Systems and Applications IV. International Society for Optics and Photonics, 2010, 7853: 785335.

    53. Wenlei L, Meng P, Liwei W. Study on optic fiber gradient hydrophone based on composite structures of compliantly varible cylinder and dia-phragm[J]. Acta Optica Sinica, 2010, 30(2): 340-346.

    54. Yu X, Zhang M, Liao Y. Research on the characteristics of hydrogel coated long period gratings[C]//Advanced Sensor Systems and Applications IV. International Society for Optics and Photonics, 2010, 7853: 78533K.

    55. 申帅,周宏朴,张敏,等.芯轴干涉型光纤水听器声压灵敏度的正交实验研究[J].激光与光电子学进展, 2011, 48(7): 070603.

    56. 杨春,张华勇,张敏,等.光纤水听器时分复用检测电路带宽与串扰分析[J].光電工程, 2010, 37(7): 75-80.

    57. Xie S, Zhang M, Lai S, et al. Positioning method for dual Mach-Zehnder interferometric submarine cable security system[C]//Fiber Optic Sensors and Applications VII. International Society for Optics and Photonics, 2010, 7677: 76770A.

    58. Zhen Y, Min Z, Yanbiao L, et al. A Study on Extrinsic Fabry-Perot Interferometric Optical Fiber Hydrogen Sensor[J]. Optoelectronic Technology, 2010, 1: 003.

    59. Xiujuan Y, Min Z, Liwei W. Characteristics of long—period optical fiber grating with high refractive index nm——thick film overlay[J]. Acta Optica Sinica, 2009, 29(10): 2665-2672.

    60. Lv W, Pang M, Shi Q, et al. Study on a fiber optic gradient hydrophone based on interferometer[C]//2008 International Conference on Optical Instruments and Technology: Optical Systems and Optoelectronic Instruments. International Society for Optics and Photonics, 2009, 7156: 71561E.

    61. Shi Q, Wang L, Zhang H, et al. The stability and consistency analysis of optical seismometer system using phase generated carrier in field application[C]//2009 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. International Society for Optics and Photonics, 2009, 7508: 75081M.

    62. Yu X, Zhang M, Childs P, et al. Characteristics analysis of cascaded long-period gratings with nm-thick film coating[C]//2009 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. International Society for Optics and Photonics, 2009, 7508: 75081N.

    63. Yu L, Liao Y, Zhang M, et al. Optimal design of flat-gain and flat-noise wide-band fiber Raman amplifiers[C]//2009 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. International Society for Optics and Photonics, 2009, 7508: 75081T.

    64. Yang Z, Zhang M, Liao Y, et al. A modified cross-correlation method for white-light optical fiber extrinsic Fabry-Perot interferometric hydrogen sensors[C]//2009 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. International Society for Optics and Photonics, 2009, 7508: 75081O.

    65. Tian C, Wang L, Zhang M, et al. Performance improvement of PGC method by using lookup table for optical seismometer[C]//20th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, 2009, 7503: 750348.

    66. Yang Z, Zhang M, Lei M, et al. An extrinsic Fabry-Perot interferometric optical fiber sensor system for hydrogen detection[C]//20th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, 2009, 7503: 750323.

    67. Yin K, Zhou H, Zhang M, et al. Optimization design of the pressure phase sensitivity of the fiber-optic air-backed mandrel hydrophone[C]//19th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, 2008, 7004: 700414.

    68. 秦海琨,张敏,刘育梁,等.光纤光栅生物传感器的研究进展综述[J].激光雜誌, 2008, 29(5): 1-3.

    69. Xiujuan Y, Yanbiao L, Min Z. Kerr effect in an optical passive ring-resonator gyro using a hollow-core photonic band-gap fiber[J]. Chinese Journal of Lasers, 2008, 35(3): 430.

    70. Yin K, Zhang M, Liao Y. Frequency characters of the air-backed mandrel fiber-optic hydrophone[J]. Acta Photonica Sinica, 2008, 37(11): 2180-2185.

    71. Zou Q, WANG L, PANG M, et al. Down-hole Seismic Survey System with Fiber-optic Accelerometer Sensor for 3-Dimensions Vertical Seismic Profile[J]. Acta Photonica Sinica, 2008, 37(1): 77.

    72. Zhu H H, Qin H K, Zhang M, et al. Peak-detection algorithm in the demodulation for the fiber Bragg grating sensor system[J]. Chinese Journal of Lasers, 2008, 35(6): 893-897.

    73. Le Y, Hua-feng Z, Xiao-hong M, et al. Research of LIBS method for detection of heavy metals in polluted soil[J]. Laser Journal, 2008, 29(5): 64-65.

    74. YU X, ZHANG M, LIAO Y. Recent progress on imprinting technologies and applications of photonic crystal fiber long period gratings[J]. Laser Journal, 2008, 5: 002.

    75. Yu X, Zhang M, Liao Y. Highly birefringent air-core photonic band-gap fiber free of surface modes[C]//Optical Fiber Sensors Conference, 2008. APOS'08. 1st Asia-Pacific. IEEE, 2008: 1-4.

    76. Yin K, Zhang M, Wang L, et al. Research on the acceleration responsivity of the fiber-optic air-backed mandrel hydrophones[C]//Advanced Sensor Systems and Applications III. International Society for Optics and Photonics, 2008, 6830: 683013.

    77. Jing Z, Zhang M, Wang L, et al. PGC demodulating scheme based on CORDIC algorithm for interferometric optical fiber sensor [6830-77][C]//PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING. International Society for Optical Engineering; 1999, 2008, 6830: 6830.

    78. Yu X, Liao Y, Zhang M, et al. Kerr effect in a passive optical ring-resonator gyroscope using a hollow-core photonic-band fiber[C]//Advanced Sensor Systems and Applications III. International Society for Optics and Photonics, 2008, 6830: 683024.

    79. Mao X, Liao Y, Zhang M, et al. A novel optical fiber biochemical sensor based on long period grating[C]//Sensors for Harsh Environments III. International Society for Optics and Photonics, 2007, 6757: 67570M.

    80. Yin H, ZHANG M, LIU Y, et al. Analysis of Long Period Fibrer Grating by Perturbation Solution[J]. Acta Photonica Sinica, 2007, 36(11): 2028.

    81. ZHANG P L Z O U Q, Yan-biao M L. Developments in and applications of fiber perimeter detection sensors[J]. Laser Journal, 2007, 4: 002.

    82. Xuan H, Jin W, Ju J, et al. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors[C]//Third European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics, 2007, 6619: 661936.

    83. Meng D, Xuan H, Zhang M, et al. Performance analysis of an in-line optical fiber analysis system for well crude oil[C]//Fundamental Problems of Optoelectronics and Microelectronics III. International Society for Optics and Photonics, 2007, 6595: 65953S.

    84. Liao F, Zhang M, Wang L, et al. The noise and digital realization of arctangent approach of PGC demodulation for optic interferometric sensors[C]//Fundamental Problems of Optoelectronics and Microelectronics III. International Society for Optics and Photonics, 2007, 6595: 65954A.

    85. Yin K, Wang L, Ding T, et al. Analysis and application for a new type of optical fiber interferometer with three-beam system[C]//Fundamental Problems of Optoelectronics and Microelectronics III. International Society for Optics and Photonics, 2007, 6595: 65952E.

    86. Yin K, Zhang M, Ding T, et al. Research on an improved passive demodulation method for optical fiber interferometer with 3× 3 coupler[C]//Fundamental Problems of Optoelectronics and Microelectronics III. International Society for Optics and Photonics, 2007, 6595: 65954B.

    87. Liu Y, Zhang M, Liao Y. Introduction of a four-step modulation used in PGC method[C]//Fundamental Problems of Optoelectronics and Microelectronics III. International Society for Optics and Photonics, 2007, 6595: 65952D.

    88. Zhu J, Zhang M, Liao Y, et al. Current-induced frequency modulation characteristics in semiconductor lasers using a novel and simple method[C]//Interferometry XIII: Applications. International Society for Optics and Photonics, 2006, 6293: 62930V.

    89. Wu K, Min Z, Wang Z, et al. Thermal effect of fiber interferometer using coaxial structure[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 59980A.

    90. Guo K, Zhang M, Liao Y, et al. Fiber-optic hydrophone with increased sensitivity[C]//Interferometry XIII: Applications. International Society for Optics and Photonics, 2006, 6293: 629312.

    91. YU X, YU Y, ZHANG M, et al. Applications of fiber Bragg grating sensor for aerospace composite and structures health monitoring[J]. Laser Journal, 2006, 27(1): 1-3.

    92. Yu X, Yu Y, Zhang M. Strain and temperature sensing characteristics of FBG packaged by the titanium alloy slice[J]. Journal of Optoelectronics Laser, 2006, 17(5): 564.

    93. Yu X, Yu Y, Zhang M. Study on the strain and temperature densing characteristics of FBG packaged by the copper slice. J[J]. Acta Photonica Sinica, 2006, 35(9): 1325-1328.

    94. Wang L, Zhang M, Mao X, et al. The arctangent approach of digital PGC demodulation for optic interferometric sensors[C]//Interferometry XIII: Techniques and Analysis. International Society for Optics and Photonics, 2006, 6292: 62921E.

    95. Peng B, Liao Y B, Zhang M, et al. New method of measuring fibers valid elastic-optic constant[J]. Optical technique, 2005, 31(5): 655-658.

    96. Peng B, Zhang M, Liao Y. The Method for Resolving Phase Shifting and Frequency Doubling of Fiber-optic sensors[J]. Journal of Optoelectronics Laser, 2005, 16(8): 913.

    97. 柏林厚,廖延彪,張敏,等.干涉型光纖水聽器PGC解調系統數字化實現的研究[J].激光雜誌, 2005, 26(5): 72-73.

    98. Peng B, Zhang M, Liao Y. Measurement of the 3-D Thermal Expansion Coefficients of Material Used by a FBG During the Large-scale Temperature Between Negative 50 and Positive150[J]. Acta Photonica Sinica, 2005, 34(10): 1501-1505.

    99. Baojin P. Study on Measuring Sensitivity of Fiber-optic Hydrophone[J]. Acta Photonica Sinica, 2005, 34(11): 1633.

    100. Linhou B. The improvement on PGC demodulation method based on optical fiber interferometer sensors[J]. Acta Photonica Sinica, 2005, 34(9): 1324.

    101. Tu D, Liao Y, Zhang M. Metal-coated long period gratings for detection of corrosion[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 59980G.

    102. Zeng N, Shi C Z, Zhang M, et al. A 3-component fiber-optic accelerometer for well logging[J]. Optics Communications, 2004, 234(1-6): 153-162.

    103. Zhang M, Kuang W, Liao Y. Intra-Cavity Absorption Gas Measurement Network Based on the Fiber Lasers[J]. Chinese Journal of lasers, 2005, 32(7): 982.

    104. Kuang W, Zhang M, Wang L W, et al. Data acquisition method for digital phase generated carrier demodulation system of optical fiber inerferometers[J]. Zhongguo Jiguang(Chin. J. Lasers), 2005, 32(8): 1086-1090.

    105. Xuan H, Liao Y, Zhang M, et al. An in-line optical fiber analysis system for well crude oil[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 59980R.

    106. Zhu J, Zhang M, Liao Y, et al. A scheme for maintaining phase modulation amplitude at best value of fiber optic sensors using phase generated carrier[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 59980Q.

    107. Wu K, Min Z, Wang Z, et al. Thermal effect of fiber interferometer using coaxial structure[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 59980A.

    108. Wang L, Zhang M, Liao Y, et al. The long-period fiber grating coated with Langmuir-Blodgett thin film for applications on biochemistry sensors[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 59980T.

    109. Yu X, Yu Y, Liao Y, et al. Strain measurement of steel and concrete structure using novel surface-mounted fiber Bragg grating sensors[C]//Sensors for Harsh Environments II. International Society for Optics and Photonics, 2005, 5998: 599807.

    110. Xuan H F, Liao Y, Zhang M, et al. Optical fiber null coupler sensor for damage detection using ultrasonic[C]//Advanced Sensor Systems and Applications II. International Society for Optics and Photonics, 2005, 5634: 381-389.

    111. Yu X, Yu Y, Liao Y, et al. Strain measurement of steel structure using a novel FBG sensor packaged by titanium alloy slice[C]//Passive Components and Fiber-based Devices II. International Society for Optics and Photonics, 2005, 6019: 60194G.

    112. Dong S, Liao Y, Zhang M, et al. Effects of chemical modification on fusion splicing of optical fiber and preparation of fiber corrosion sensor[C]//Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers. International Society for Optics and Photonics, 2004, 5579: 213-221.

    113. Liao Y, Yan C, Lai S, et al. Design of an applied optical fiber process tomography system[C]//Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers. International Society for Optics and Photonics, 2004, 5579: 221-226.

    114. 靳伟,张敏等,《光纤传感技术新进展》第四章,第八章,科学出版社,2005年7月第一版

    115. 廖延彪,张敏等,《光纤传感技术与应用》,清华大学出版社,2009年1月

    116. He X, Zhang M, Xie S, et al. Self-Referenced Accelerometer Array Multiplexed on a Single Fiber Using a Dual-Pulse Heterodyne Phase-Sensitive OTDR[J]. Journal of Lightwave Technology, 2018, 36(14): 2973-2979.

    117. Duo Y, Xiangge H, Fei L, et al. Self-suppression of common-mode noises of the different fiber optic interferometric accelerometers[J]. Optics Express, 2018, 26(12): 15384-15397.

    118. Lin Y, Liu F, He X, et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics express, 2017, 25(25): 31568-31585.

    119. Han L, He X, Pan Y, et al. Distributed acoustic sensing technique and its field trial in SAGD well[C]//AOPC 2017: Fiber Optic Sensing and Optical Communications. International Society for Optics and Photonics, 2017, 10464: 104642K.

    120. 刘飞, 颜晗, 华波, 等. 载波相位偏差对光纤检波器解调的影响[J]. 光学学报, 2017, 37(9): 0906001.

    121. Yi D, Zhang M. Heat flux investigations during flame thermal spray process using the lumped capacitance method[J]. Applied Thermal Engineering, 2017, 123: 554-561.

    122. Yi D, Zhang M, Gu L, et al. Finite element analysis of fiber optic embedded in thermal spray coating[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(5): 896-904.

    123. He X, Liu F, Qin M, et al. Phase-sensitive optical time-domain reflectometry with heterodyne demodulation[C]//25th International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2017, 10323: 103235Q.

    124. Liu F, Qiu X, Xie B, et al. A new measurement scheme for delay parameters in TDM fiber optic interferometric sensor network[C]//25th International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2017, 10323: 103231N.

    125. Cao S, Xie S, Liu F, et al. Numerical and experimental analysis of polarization dependent gain vector in Brillouin amplification system[J]. Optics Communications, 2017, 389: 23-28.

    126. He X, Xie S, Liu F, et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics letters, 2017, 42(3): 442-445.

    127. Qiu X, Liu F, Xie B, et al. A new fiber optic accelerometer with push-pull structure using 3× 3 coupler[C]//Optical Fiber Sensors Conference (OFS), 2017 25th. IEEE, 2017: 1-4.

    128. Cao S, Zhang M. Polarized and birefringence-dependent stimulated Brillouin scattering in single mode fiber[J]. Optik-International Journal for Light and Electron Optics, 2017, 131: 374-382.

    129. Liu F, Xie S, Qiu X, et al. Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation[J]. Journal of Lightwave Technology, 2016, 34(23): 5453-5461.

    130. He X, Xie S, Cao S, et al. Influence of stimulated Brillouin scattering on positioning accuracy of long-range dual Mach–Zehnder interferometric vibration sensors[J]. Optical Engineering, 2016, 55(11): 116111.

    131. Cao S, Xie S, Zhang M. Polarization beat length estimation based on the statistical properties of Brillouin gain in SMF[J]. IEEE Photonics Technology Letters, 2016, 28(18): 1960-1963.

    132. Zhang* C, Liu F, Xu G, et al. Initial Results of Microseismic Monitoring of SAGD well by Fiber-optic Seismometer Arrays in Fengcheng Oilfield[C]//2016 Workshop: Rock Physics and Borehole Geophysics, Beijing, China, 28-30 August 2016. Society of Exploration Geophysicists, 2016: 122-124.

    133. He X, Zhang M, Xie S, et al. Self-Referenced Accelerometer Array Multiplexed on a Single Fiber Using a Dual-Pulse Heterodyne Phase-Sensitive OTDR[J]. Journal of Lightwave Technology, 2018, 36(14): 2973-2979.

    134. Duo Y, Xiangge H, Fei L, et al. Self-suppression of common-mode noises of the different fiber optic interferometric accelerometers[J]. Optics Express, 2018, 26(12): 15384-15397.

    135. Lin Y, Liu F, He X, et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics express, 2017, 25(25): 31568-31585.

    136. Han L, He X, Pan Y, et al. Distributed acoustic sensing technique and its field trial in SAGD well[C]//AOPC 2017: Fiber Optic Sensing and Optical Communications. International Society for Optics and Photonics, 2017, 10464: 104642K.

    137. 刘飞, 颜晗, 华波, 等. 载波相位偏差对光纤检波器解调的影响[J]. 光学学报, 2017, 37(9): 0906001.

    138. Yi D, Zhang M. Heat flux investigations during flame thermal spray process using the lumped capacitance method[J]. Applied Thermal Engineering, 2017, 123: 554-561.

    139. Yi D, Zhang M, Gu L, et al. Finite element analysis of fiber optic embedded in thermal spray coating[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(5): 896-904.

    140. He X, Liu F, Qin M, et al. Phase-sensitive optical time-domain reflectometry with heterodyne demodulation[C]//25th International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2017, 10323: 103235Q.

    141. Liu F, Qiu X, Xie B, et al. A new measurement scheme for delay parameters in TDM fiber optic interferometric sensor network[C]//25th International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2017, 10323: 103231N.

    142. Cao S, Xie S, Liu F, et al. Numerical and experimental analysis of polarization dependent gain vector in Brillouin amplification system[J]. Optics Communications, 2017, 389: 23-28.

    143. He X, Xie S, Liu F, et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics letters, 2017, 42(3): 442-445.

    144. Qiu X, Liu F, Xie B, et al. A new fiber optic accelerometer with push-pull structure using 3× 3 coupler[C]//Optical Fiber Sensors Conference (OFS), 2017 25th. IEEE, 2017: 1-4.

    145. Cao S, Zhang M. Polarized and birefringence-dependent stimulated Brillouin scattering in single mode fiber[J]. Optik-International Journal for Light and Electron Optics, 2017, 131: 374-382.

    146. Liu F, Xie S, Qiu X, et al. Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation[J]. Journal of Lightwave Technology, 2016, 34(23): 5453-5461.

    147. He X, Xie S, Cao S, et al. Influence of stimulated Brillouin scattering on positioning accuracy of long-range dual Mach–Zehnder interferometric vibration sensors[J]. Optical Engineering, 2016, 55(11): 116111.

    148. Cao S, Xie S, Zhang M. Polarization beat length estimation based on the statistical properties of Brillouin gain in SMF[J]. IEEE Photonics Technology Letters, 2016, 28(18): 1960-1963.

    149. Zhang* C, Liu F, Xu G, et al. Initial Results of Microseismic Monitoring of SAGD well by Fiber-optic Seismometer Arrays in Fengcheng Oilfield[C]//2016 Workshop: Rock Physics and Borehole Geophysics, Beijing, China, 28-30 August 2016. Society of Exploration Geophysicists, 2016: 122-124.